Constructionism Imagineering Learning Model via Metaverse to Enhance Young Innovators

Abstract

Constructionism imagineering learning model via metaverse is an instrument for promoting self-learning through hands-on. To create new knowledge for young innovators by combining the concepts of technology and new learning platforms to create new ideas. Designing teaching and learning that can be used to learn in the new normal focuses on continuous learning at any time, anywhere, with the benefits of using technology. The sample group is six experts in designing and developing learning models and learning systems from various institutions in higher education by purposive sampling. The research instruments are as follows. 1) The constructionism imagineering learning model via metaverse to enhance young innovators. 2) The constructionism imagineering learning process via metaverse to enhance young innovators. 3) An assessment form for the constructionism imagineering learning model via metaverse to enhance young innovators. 4) An assessment form for the constructionism imagineering learning process via metaverse to enhance young innovators. Analyse data using mean and standard deviation. The researchers found that the constructionism imagineering learning model via metaverse and the constructionism imagineering learning model via metaverse, which is developed is appropriate to enhance young innovators at the highest level, following the research hypotheses.

Suputtra Sapliyan, Pinanta Chatwattana & Prachyanun Nilsook (2023)
Constructionism Imagineering Learning Model via Metaverse to Enhance Young Innovators. Journal of Education and Learning; Vol. 12, No. 4; 2023 ; pp.81-91. (ERIC)
https://doi.org/10.5539/jel.v12n4p81

An Information Service Platform for Decision Support in Academic Admissions Using Data Fabrics and Artificial Intelligence

ABSTRACT

This paper presents the architecture of an information service platform for decision support in academic admissions, utilizing data fabrics and artificial intelligence. The factors affecting students’ further education can be classified into four main types: (1) the course, (2) image, (3) personal reasoning of the student, and (4) public relations. The process of providing information for decision support in academic admissions can be divided into six stages: (1) collecting information, (2) matching study guidance, (3) recommending appropriate education, (4) confirming information, (5) assessing student admissions, and (6) providing feedback. Data fabric is an increasingly popular technology application for data management. The data fabric architecture consists of six layers: (1) an augmented data catalog, (2) a knowledge graph enriched with semantics, (3) metadata activation, (4) a recommendation engine for active metadata, (5) data preparation and integration, and (6) orchestration and data operations. A smart decision support system (DSS) technology is used to assist in decision-making. The results showed that this architecture has an excellent level of suitability (mean = 4.56, standard deviation = 0.35). It can be applied to a university to help it become a digital university and align with its mission.

Tasatanattakool, P., Nongnuch, K., Wannapiroon, P., & Nilsook, P. (2023).
An Information Service Platform for Decision Support in Academic Admissions Using Data Fabrics and Artificial Intelligence.
International Journal of Interactive Mobile Technologies (iJIM), 17(21), pp. 34–49. https://doi.org/10.3991/ijim.v17i21.41757

“ผู้ประสบความสำเร็จในวิชาชีพ” 3 พ.ย.2566

คณะครุศาสตร์อุตสาหกรรม ขอแสดงความยินดี 🎉
กับ ศ.ดร.กฤษมันต์ วัฒนาณรงค์และ ศ.ดร.ปรัชญนันท์ นิลสุข
ภาควิชาครุศาสตร์เทคโนโลยีและสารสนเทศ
ในโอกาสที่ได้รับโล่ประกาศเกียรติคุณ
เป็นบุคคลที่ได้รับการยกย่องเชิดชูเกียรติในฐานะ
“ผู้ประสบความสำเร็จในวิชาชีพ”
จาก สมาคมเทคโนโลยีและสื่อสารการศึกษา
เมื่อวันที่ 3 พฤศจิกายน พ.ศ. 2566 ณ กราฟโฮเทล กรุงเทพ